

Process and manufacturing Summary of issues

(FENet)

Gerrit-Jan Dop, SKF - The Netherlands Stefano Odorizzi, Engin Soft - Italy

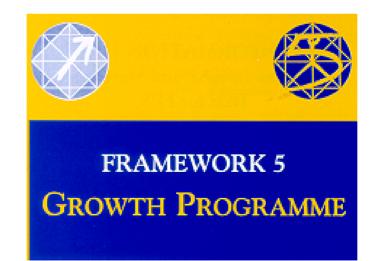
Industrial requirements

(FENet)

- Variety of processes
- Variety of materials
- Human/cultural aspects (role of experience)
- Time constraints
- Process simulation as part of the design chain

Summary of issues

FENet


- To incorporate empirical knowledge in analytical (FEA) tools
- How to obtain reliable validation and verification data
- Multi scale modelling
- How to couple various commercial and/or proprietary programs
- How to extend product life through process optimisation
- How to obtain and apply failure criteria (forming limit diagrams)
- Fundamentals of material models
- How to obtain material data in strain, temperature, strain rate range of process
- How to obtain process data (friction, heat transfer coefficients..)
- How to analyse multi (2) phase systems with commercial codes
- How to translate material properties that are generated during the process into final product performance

Integrated **Development Routes for Optimised Cast** Aluminium Components

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet>

WP1 Horizontal integration of process simulation into design chain treatments 50 D Micromodeling **WP7** mapp 3 naly: Post-casting Components uality Project Management integration ess Automotive industry SH 0 WP2 WP3 WP4 WP5 WP6 **Process Optimisation** WP8 WP9 **EXPLOITATION**

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet

Software Integration treatments **WP7** Micromodeling **Stress Analysis** Component by Al gravity casting Post-casting **Process Optimisation**

(FENet)

Conclusions

Developments - Four levels

FENet

(For each item to be taken into account)

- Definition of general criteria (i.e. level of understanding of the principles and roles each item plays in simulation procedures)
- Theoretical developments (i.e. level of understanding of the physics and of numerical approach which is suitable for each item)
- Experimental work (to obtain data which are necessary to perform simulation incorporating the corresponding item in a reliable way)
- Availability of the various items in simulation codes (continuous upgrade of the codes taking into account the given item)

Conclusions - Cont.

Developments - Four levels - Example

(Source: COPROFOUND Project)

ITEM	Definition of general criteria	Theoretical developments	Experimental work	Availability into simulation codes
Thermophysical properties	OK	OK	In progress	Up-grade
Heat Transfer Coefficients	OK	OK	In progress	Up-grade
Evaluation criteria	OK	OK	In progress	Up-grade
Micromodelling and/or property prediction				
- steel	ОК	ОК	OK	Now
- cast iron	OK	OK	OK	Now
 light alloys 	OK	OK	In progress	4 years
New processes				
 semi-solid casting 	OK	OK	OK	Now
- squeeze-casting	OK	In progress	In progress	3 years
 vacuum diecasting 	OK	OK	OK	Now
- lost foam	In progress	In progress	In progress	2 years
New materials	In progress	In progress	In progress	4 years
Optimisation	OK	OK	In progress	2 years

Conclusions - Cont.

Role of education

- Continuing vocational training
- Different disciplines (material science, industrial processes, numerical methods, information technologies)

Simultaneous engineering approach

First Level

- Second Level
 - Third Level
 - Fourth Level
 - » Fifth Level

