

(FENet)

Niels Dam Lerke

Finite Element Analyses

Finite Element Analyses are increasingly being used in the design process of small electronics, as mobile phones, from scratch to prototype testing.

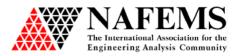
Characteristic of product development

- Short development time, time to market factor is extremely important
- Traditionally, development of small electronics have been supported by (rapid-) prototyping. Testing with trial-and-error and very fast design updates
- Plastic components for small electronics have not been as well optimized as other industries.

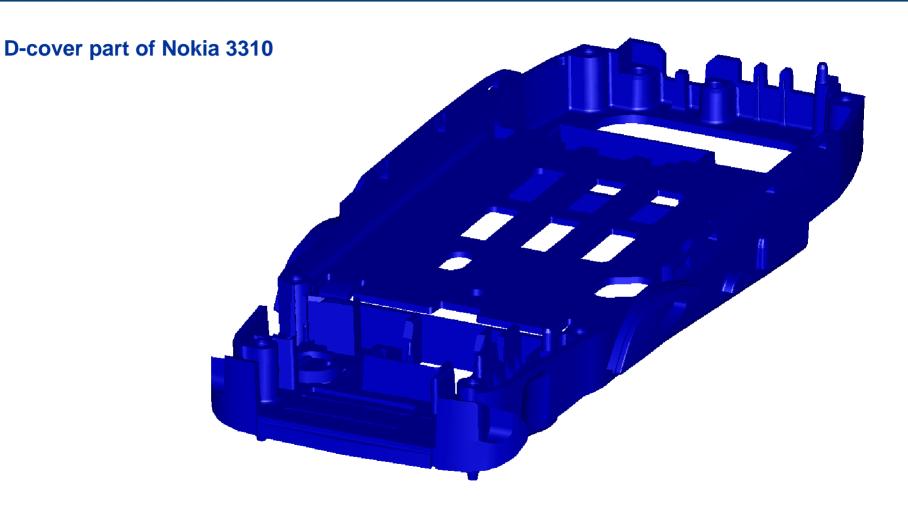
Analyses

- The use of Finite Element technology has now been very well adopted in small electronics industry, and in following is divided into:
 - Static analyses
 - Dynamic analyses
 - Packaging level analyses
 - Moldflow analyses
 - Others

FENet>



FENet


Static analyses on single part level

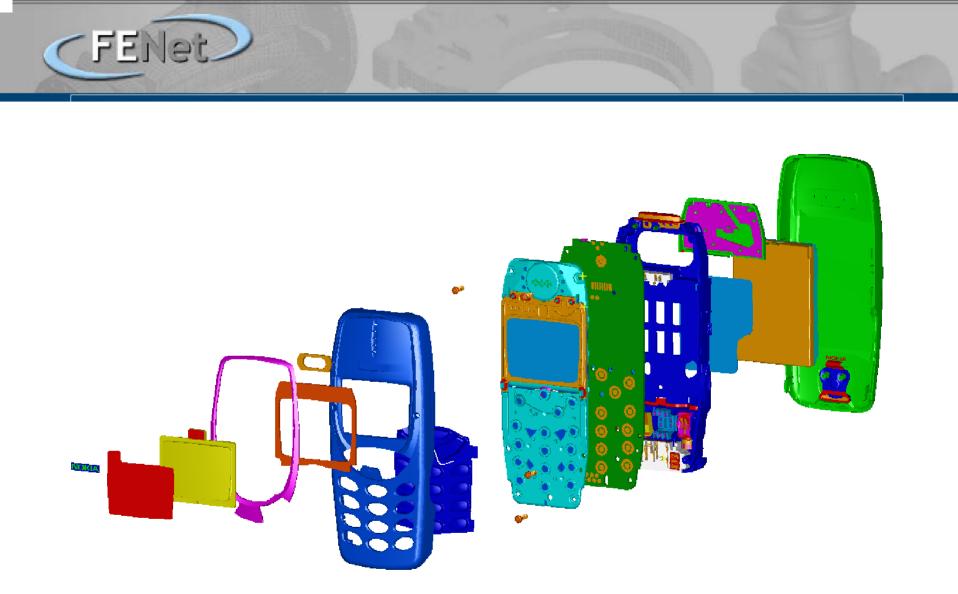
- Static analyses on single part level plays an important role in design stage where updates and revisions happen daily and is used for:
 - Optimization of single parts design by comparing different modifications.
 - Very complex geometries are made possible by use of injection molding process
 - Many parts like speakers, buttons, PWB's etc causes many gaps, fillets and other features.
 - Preprocessing is an inportant and very time consuming task due to part preparation and simplification
 - Material models are typical simple linear, if purpose of analysis is of simple comparative nature
 - Creep or nonlinear material models in more advanced cases

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

I-DEAS Visualizer Display 1 mN/mm^2 01_FemS1 B.C. 1,TIME = 1.0,CAUCHY STRESS_8 1.65E+06 /opt/mek/cph/hda12/user/nielerke/HDa12_Release-Spring STRESS Von Mises Averaged Top and bottom shell 1.56E+06 Min: 1.17E+03 mN/mm^2 Max: 1.65E+06 mN/mm^2 Part Coordinate System 1.48E+06 1.40E+06 1.32E+06 1.24E+06 1.15E+06 1.07E+06 9.89E+05 9.06E+05 8.24E+05 7.42E+05 6.60E+05 5.77E+05 4.95E+05 4.13E+05 3.30E+05 2.48E+05 1.66E+05 8.35E+04 1.17E+03

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

(FENet)


FENet

Static analyses on assembly part level

- Mobile phone assembly:
 - Many parts, can be more than 20
 - Combination of different materials as plastic and metal
 - Can include rubber material
 - Parts can be snapped or screwed together
 - Can be advanced solve if geometric and material nonlinearity is included.
 - Many contacts

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

FENet

Dynamic analyses

- Impact resistance is a major requirement and is increasingly included in analyses:
 - Linear dynamic analyses
 - Modal analyses
 - » Single part analyses
 - » Assemblies
 - Modal testing
 - » Stiffness
 - » Frequencies
 - » Damping
 - Nonlinear Dynamic analyses
 - Typical explicit methods
 - Contact
 - Simplified material models, subject for further investigation

FENet

Packaging level

- Extremely detailed models
 - on detailed solder level
 - sub modelling: Global to local models
- Advanced material models
- FE analyses on packaging level are performed for
 - Thermal loading
 - Mechanical loading
 - Themo-mechanical loading
- Thermal, mechanical and thermo-mechanical analyses in this field is of very high interest.

FENet

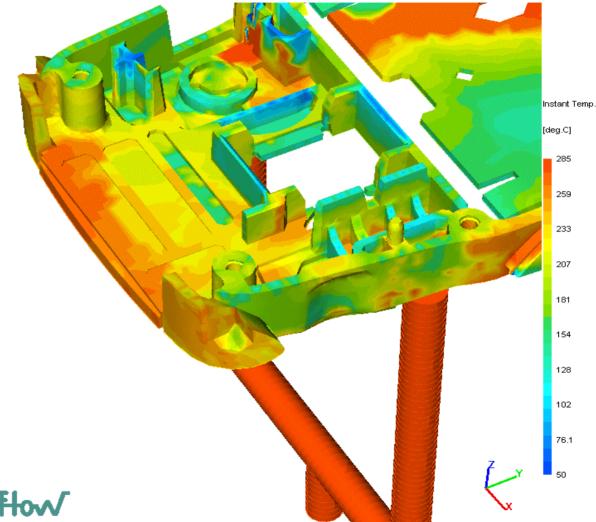
Heat transfer analyses

- Increasing need for consideration of heat transfer analysis
 - More and larger components gives more convection
 - Miniturization is a challenge

Moldflow analyses

- Complex part geometry is very demanding to injection molding manufacturing
 - Moldflow analyses on single part level for
 - Design optimization
 - Gate positioning
 - Welding line positioning, for strength consideration
 - After pressure to avoid sinkmarks

Optical Simulations


Hard to perform, specialist area

Moldflow analysis

FENET THEMATIC NETWORK COMPETITIVE AND SUSTAINABLE GROWTH (GROWTH) PROGRAMME

Use of Finite Element analyses in the future

- More integrated analyses
 - Increasing use of integrated ease of use tools
 - Use of FE at design engineer level
 - Optimization
- More advanced models
 - More nonlinear dynamic models
 - Rate dependent material models in dynamic analyses
 - Coupling of global and local models, eg packaging
- Coupling of analyses
 - Qualities from moldflow analyses into FE analyses

• Material models:

FENet

- There is a great need for clarifying strain rate dependencies, ultimate (tensile) stress at different strain rates, fatigue machanisms and parameters and others for many polymer materials
- Must be a need for other companies in consumer goods industry
- Lifetime prediction and optimization in Electronic Packaging under thermal, mechanical and thermomechanical loading
- Multiphysics

