

Industry Sector	RTD Thematic Area	Date

Reinventing the wheel

Dr. Casimir Katz SOFiSTiK AG, Oberschleissheim, Germany

Summary

There are pros and cons for having a unique solution for a certain class of problems. The cons are the reason why we have to reinvent the wheel so often. How can we gain the best from this non optimal approach.

What are the benefits of having an all purpose FE Software ?

- DO NOT REINVENT THE WHEEL!
- Buying is nearly always cheaper than development cause the effort is distributed on many customers
- Higher stability of software code. More customers are using the same software and may exchange know how
- We will have more features available (Complex nonlinear analysis, dynamic, Design, Multiphysics etc)
- With the software we obtain (or believe to obtain) knowledge and possibilities -We might even believe that the responsibility for our work has moved to the author of the software.
- Easy exchange of product data with others.

What is the problem with the all purpose FE Software ?

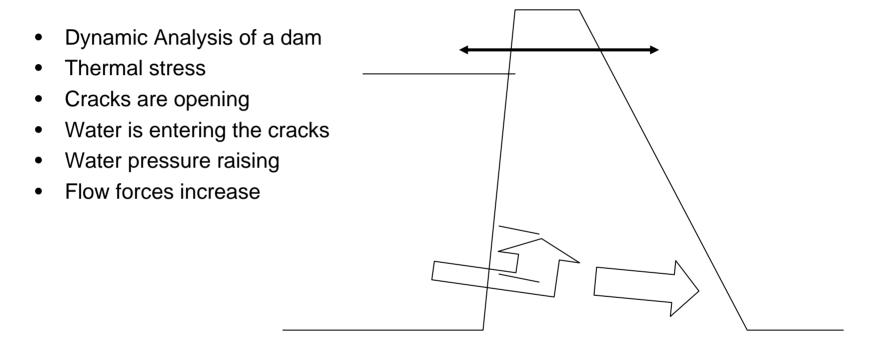
- Difficult to use
- Growing Complexity
 - The fractal dimension of a software system is at least greater than 1
 i.e. doubling the features will need more than double of effort of the original
 program
 - The communication effort of a team will increase considerably with it's size. More than 7 people will degrade the overall performance.
 - No one will have an overview of the total system or understand all the manuals and menus
- Growing Inertia
 - Changes will need more time
 - Old features to be kept will hamper developement of new versions
 - Sometimes we need a special solution not yet implemented, this might become to expensive.

More problems, not spoken about very often

- MONOPOLY
 - We depend on the good will of the provider of the software
 - The production of add ons to software packets (e.g. AutoCAD) is not easy
- The view of the user:
 - We work on projects and do not want to share our know how with others
 - We will understand some problems only if we have a white box testing facility i.e. learning by doing means programming not clicking
- The view of the other software companies
 - If we earn more money by reinventing the wheel we will do so
 - We want to have the "killing" application which is much more better than those of our competitors.

The interface problem

FENet


- We will always have different FE-codes
- We will always have different CAD systems
- We will always have different data exchange formats
- A simple exchange format can be easily implemented but does not transport enough volume of necessary data. So we need manual amendments for any cycle
- A complex format is difficult to implement and might be insufficient either
- What we need is
 - a very simple format or api of a widely used database
 - A rather complex description of possible data (as easy as possible but not easier)
 - A simple method to attach our specific data to the global model

Example for complex interaction

• Modularity

FENet>

- Separate Tools for separate tasks keep complexity down
- Clear interfaces facilitate tests and error tracking
- Interconnectivity via a high speed database
- Object oriented concepts
 - Facilitates the development of components
 - Requires higher organisation effort
 - Is there the invariance of total effort ?
- Macro Languages
 - Provides the user with its own tailored applications
 - Facilitates the reuse of input data

- Modular program concept
 - = up to 30 different modules (becoming less)
- CDBASE

FENet

- A high speed multi user database containing all data
- BREP of the geometry as an interface to generic CAD-models
 - all information (boundary conditions, properties loading etc) is independent from the FE-mesh
- Full programmable macro Language
 - Two step parser and interpreter
 - Variables, Formulas, Loops, IF-ELSE-ENDIF
 - Access to the database
 - HTML/XML structure of results, allowing editing of data in the report of results and immediate restart of analysis

